MILLER INDICES AND ZONE AXES KEY

SHOW ALL WORK. Calculate Miller Indices, given the following intercepts:

2.
$$a' = \infty$$
 $b' = 0.5$ $c' = -2$

3.
$$a' = 2$$
 $b' = 3$ $c' = 4$

4. a' = 0.5 $b' = 0.3\overline{3}$ c' = 1

Answer _____

5. a' = 0.5 b' = -0.25 c' = $0.3\overline{3}$

Answer _____

6. $a' = \infty$ b' = 3 $c' = \infty$

7. a' = 1 b' = 5 c' = 2

$$b' = 5$$

$$c' = 2$$

Answer _____

8. a' = 6 b' = 4 c' = 2

$$b' = 4$$

$$c' = 2$$

Answer _____

9. a' = -2 b' = 1 c' = 3

$$b' = 1$$

$$c' = 3$$

Answer ____

Calculate Miller Indices from the following X-ray data:

Maladonite $\mathbf{a} = 0.797 \text{ nm}$, Au_2Bi , isometric

10. x' = 0.397 nm

Polarite $\mathbf{a} = 0.719 \text{ nm } \mathbf{b} = 0.869 \text{ nm } \mathbf{c} = 1.068 \text{ nm}, \text{Pd(Bi,Pb)}, \text{ orthorhombic}$

Answer _____

Answer _____

13.
$$x' = 4.295 \text{ nm}$$

 $y' = \infty$
 $z' = 1.603 \text{ nm}$

Answer ____

Chalcopyrite $\mathbf{a} = 0.525 \text{ nm}$ $\mathbf{c} = 1.032 \text{ nm}$, CuFeS₂, tetragonal

Calculate the zone axis of each of the following pairs of planes. Reduce the axis if a common denominator for the three numbers exists:

16. (321), $(13\overline{2})$

17. (210), (021)

Answer _____

18. $(\overline{4}2\ \overline{4})$, $(4\overline{2}4)$

Answer _____

19. (201), (012)	
20. (002), (010)	Answer